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METEOROLOGICAL VARIABLES ASSOCIATED WITH POPULATION DENSITY
OF CULTURABLE ATMOSPHERIC BACTERIA AT A SUMMER SITE
IN THE MID-WILLAMETTE RIVER VALLEY, OREGON

1. INTRODUCTION

The effects of environmental conditions on survival of airborne bacteria
have largely been determined in laboratory studies (e.g., Ehrilich, et al., 1970a,b;
Dimmick, 1960; Babich and Stotzky, 1974; Lighthart, 1973; Tong, and Lighthart, 1998).
Relatively little research has been done to evaluate the insitu environmental conditions
associated with their atmospheric abundance and dynamics. In the distant past Miquel
and Bnoist (1890) outside Paris, Vladavets and Mats (1958) near Moscow and more
recently, Lighthart and Shaffer (1995) in Oregon’s Willamette River Valley tried to
associate atmospheric bacterial abundance to meteorological conditions. The
importance of understanding the consequences of the environmental conditions is
indicated most dramatically in the use of dynamic mathematical models to simulate
rather well known atmospheric bacterial population dynamics (Lighthart and Kirilenko,
1998; Lighthart and Shaffer, 1995). Further, the annual and diurnal concentration of
atmospheric bacteria has been hypothesized to be associated with the annual and daily
solar cycles (Lighthart, 1999).

For additional information, recent books and mini-review articles
describing the distribution and ecology of total and culturable atmospheric bacteria are:
Dimmick and Akers, 1969; Lighthart and Mohr, 1994; Cox and Wathes, 1995; Mohr,
1997; and Lighthart, 1997, 2000.

The purpose of this study was to confirm and extend our understanding of
the atmospheric bacterial population dynamics in the Willamette River Valley, Oregon
from our previous work (i.e., Lighthart and Shaffer, 1995).

2. METHODS

To determine if there could be a statistically significant relationship of 20
measurable environmental parameters (Table 1) and the culturable atmospheric
bacteria (CAB) concentration 1.3 m above ground level (AGL) found at a location in the
mid-Willamette River Valley during the summer of 1996, the following sampling,
bacteriological, and statistical methods were used.

2.1 Sampling.

Meteorological and bacteriological sample measurements were obtained
from instruments mounted on a 10 m meteorological tower located 100 x tower height
meters from any physical obstructions during the summer of 1996. The tower was
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modified (see Fig. 1 in Lighthart and Shaffer, 1994) with 3, hand-crankup platforms at 0
(i.e., low), 2 (i.e., mid), or 6 (i.e., high) m AGL plus the displacement distance and
aerodynamic roughness length (Stull, 1988) of 0.33 m. Meteorological measurement
instruments were placed on the tower as follows: temperature (Campbell Scientific,
Logan, UT) at low and high levels, hygrometer (Campbell Scientific, Logan, UT) at the
mid level, pyranometer (LI-COR, Inc., Lincoln, NE) with southern exposure at the low
level for cleaning purposes, cup anemometer and wind direction (MetOne, Inc., Grants
Pass, OR) at 10 m AGL. If the air mass being observed was warmer at 2.3 m than

6.3 m, the air mass was considered to be ascending or unstable, and descending or
stable under the reverse conditions. Three-axis sonic anemometer/thermometer
(Applied Technologies, Inc., Boulder, CO) was located in the mid range tower height
facing the prevailing wind and operated at 0.1 s data sampling rate that was averaged
over 10 or 20 min. for datalogger storage. Ground temperature and RH at 0 m AGL and
soil temperature at —0.1 m AGL measurements were also recorded.

2.2 Bacteriological Sampling.

Two-slit impact samplers (S-T-A Biological Samplers; New Burnswick
Scientific Co., Edison, NJ) were located both at the low and high meteorological tower
platforms. Samplers were run at 28.3 I/min for the Andersen samplers and 55 I/min for
the slit samplers for 20-50 depending on the expected airborne bacterial concentration.
S-T-A Biological sampler data at the high level and Andersen sampler data were not
reported.

The CAB collected in the S-T-A samplers were grown on Luria Bertani
agar (LB; Difco Laboratories, Detroit, Ml), amended with 200 pg ml-1 cycloheximide
(Sigma Chemical, C., St. Louis, MO) to inhibit fungal growth. The agar plates were
incubated for 7 D at 25°C and colonies counted thereafter in 2 min segments. Finally,
10 min mean counts of the colonies on the replicate plates were recorded.

2.3 Statistical Analysis.

To assure a statistically conservative analysis, any CAB observation
outliers (i.e., those observations not fitting the straight line lognormal CAB distribution)
and their associated continuous, environmental, independent parameter observations
were eliminated. Any of the 20 independent parameter observation Mahalanobis
Distance outliers were removed from consideration in the analysis using JMP v4.0.2
(SAS Institute. Cary, NC). In addition any of the independent parameters missing
> 30% of its observations were also removed from the data analyses. After removal of
these data, a Stepwise Regression was performed to determine which of the remaining
independent parameters contributed significantly (i.e., where Mallows criterion, Cp,
approaches p, the number of parameters in the model) to the model. This elimination
process left 6 independent parameters with up to 4149 measurements each. The
remaining parameter are: (1) air temperature 2.3 m AGL, (2) relative humidity 5 m AGL,
(3) wind speed 1.7 m AGL, (4) wind direction 10 m AGL, (5) temperature difference
2.3 m-6.3 m AGL, and (6) time of day. Subsequently, 3 6-way factorial analyses were




generated with either main effects only, or 2", or 3™ degree interaction linear models.
Finally, an analysis of variance (AVOVA) was performed to determine if the generated
models were statistically significant representatives of the CAB data.

Where categorical variables were used they were defined by logical
delineation of distribution histographs as follows: day or night as solar radiation > or
0 kW/m?; weather as clear or cloudy; time of day as 0000 to <0600 h, 0600 to <1200 h,
1200 to <1800 h, 1800 to <2400 h; and wind direction 10° to <150°, 150° to <230°, and
230° to <10°.

3. RESULTS

On 4 of the 14 observation days, 31 outlying CAB observations (i.e.,
0.74%) and their associated independent parameter observations were removed from
the analysis as they did not fit the straight line quantile plot of the lognormal distribution
of the rest of the CAB observations, i.e., any mean colony forming unit (CFU) counts
>218 were outside the 95% confidence distribution of the data. They formed another
distinct angle and line at the upper end of the distribution. Almost all of the 31 CAB
outliers occurred when large agricultural machines were operating next to the
observation tower. (One could conclude that agricultural machines could contribute to
false background readings.) Of the 4180 observation sets, 205 (4.9%) had Mahalanobis
Distances > 5.1 and were also removed as outliers from the analyses. Next, 9 of the 20
independent parameters had = 30% of their observations missing and 7 exceeded
acceptable Mallow’s criterian statistics as determined by the Stepwise Regression
process, all were deleted from the analysis (Table 1). Finally, 6 parameters were left
each with 3,944 data items: (1) wind direction at 10 m, (2) air temperature difference
between 2.3 and 6.3 m (2AT), (3) wind speed at 1.7 m, (4) time of day, (5) air
temperature at 2.3 m, and (6) air relative humidity at 2.3 m.

ANOVA for 1%t (main effects), 2", and 3™ degree interaction models, all
using the 6 parameters listed above, were all highly significant (i.e., F-value <0.0001;
Table 1) with all 6 parameters included as highly significant in each model (Table 2).

The 3 6-way factorial analyses for the linear models had a range of effects
from a poor main effects model fit (adj. R?=0.37) to a moderate fit (adj. R>=0.59) of the
3" degree model to the CAB observations. In the 1%t degree model, 92.6% of the model
fit was accounted for by 2 parameters, wind direction and the temperature difference
between 2.3 and 6.3 m (=86.9+5.7). Wind speed, temperature at 2.3 m, RH and time of
day accounted for the remaining 7.4% of CAB variation in the data model (Table 3). In
the 2™ degree interaction model, 83.8% of the variation in the model was accounted for
by the relative humidity and temperature at 2.3 m while the temperature at 2.3 m and
AT interaction accounted for a further 12.9% or almost all of the model fit, i.e.,
83.8+12.9%=96.7% (Table 4). Finally, the 3" degree interaction model, 67.2% of the
variation in the model was accounted for by the relative humidity and temperature at

10



Table 2. Observation Dates and Times at the Willamette River Valley Station in 1996

Time of day

Date Start End
22-Jul 1005 2000
23-24 Jul 1830 1400
25-Jul 0130 1200
6-7 Aug 1740 0400
8-Aug 0130 1220
9-Aug 1010 2000
19-Aug | 1010 2000
20-21 Aug 1740 0400
22-Aug 0130 1220
2-Sep | 1015 2000
34 Sep 1740 0400

5-Sep 0500 2150

11
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2.3 m, and wind direction interaction. An additional variation of 14.7% more was
accounted for by the temperature at 2.3 m, and AT and wind speed at 1.7 m interaction
giving a total accounting of 81.9% of model fit of adj. R? of 0.59 (Table 5). In
conclusion, 5 of the 6 parameters accounted for most of the variation of the CAB data
with the difference in temperature the only parameter found in all 3 models while the
other 4 were found in only 2 of the models.

It must be emphasized, that albeit the fit of the 1! degree model
accounted for only 37 % of variation in the CAB observations all 6 of the parameters
were highly significant contributors to the model (Table 3). Further, 92.6% of the
adjusted R? fit-value was due to 3 parameters, wind direction, +AT, and wind speed.
Wind direction alone accounted for 86.9% of the fit-value (Table 3). The parameters in
the 1% degree model were significant and were the only ones used in the 2" and 3™
models, consequently they must also be significant in the higher degree models.

4. DISCUSSION

This report is a general description of the parameter qualities as they
appear to be related to the quantity of CAB in the summer time at the observation
location in the agriculturally very active Willamette River Valley, in western Oregon.
These features are shown in Figures 1, 2, and 3, and Table 5. The figures show that
generally higher concentrations of CAB are associated with warm, dry, unstable air (i.e.,
(+)AT), winds coming from the ENE down the Valley. This scenario comes about when
solar radiation occurs especially in the morning hours. In the late afternoon and
evening, on shore winds became moderate (< 15 m/s) out of the WNW and abated
about 2000 h. The lower concentrations of CAB are generally associated with cool,
moist, stable (i.e., (-) AT) WNW winds coming across the Douglas fir covered Pacific
Coast Mountain Range from the Pacific Ocean some 80 km to the west. The lower
concentrations occur during nighttime and pre-dawn hours.

Figures 2, 3, 4, and 5 shows that there are distinct meteorological
conditions associated with the natural prevalence of culturable airborne bacteria at the
observation location during the summer: (1) daytime moderate ascending winds from
the ENE traversing bacterial sources, plant and dry soil surfaces of the Willamette River
Valley, and (2) nighttime light descending winds from the WNW over and through gaps
in the Douglas fir forests of the Pacific Coast Mountain Range from the Pacific Ocean.
The ocean air could be the source of the relatively clean air (Schroeder, Fosberg,
Cramer and O’Dell, 1967; Olsen and Tuit, 1970; Neff and King, 1987; Lighthart and
Shaffer, 1995).

There are several features of the CAB data that need to be addressed if
progress is to be made in understanding the dynamics of natural populations of airborne
bacteria in the atmosphere. The first is the liberation mechanism. How do bacteria get
from a static position on a source surface to the airborne situation? Is it an air motion or
wind mechanism (e.g., Aylor, 1975)? Is it an electrostatic repulsion mechanism when
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Fig. 1. 3D-Plot of Temperature (X-Axis) and Relative Humidity (Z-Axis) 2.3 m AGL
and Mean CAB 0.3 m AGL (Y-Axis). Colored symbols for 2.3 & 6.3 m
temperature difference (magenta, (+AT) or ascending; blue green, (-AT) or
descending; white, neutral); symbols for prevailing wind directions ((x) or
WNW (230 to 10° with mean 307°); (0) or ENE (10 to 150° with mean 64°),
() 150 to 230°) during the summer of 1996 at the Willamette River Valley
observation station.




Fig. 2. Graph of Temperature (X-Axis) 2.3 m AGL and Mean CAB 0.3 m AGL (Y-Axis).
Colored symbols for 2.3 & 6.3 m temperature difference (magenta, (+AT) or

unstable air; blue green, (-AT) or stable air; white, (0) or neutral air); symbols

for prevailing wind directions ((x) or WNW (230 to 10° with mean 307°); (0) or

ENE (10 to 150° with mean 64°), ( ) 150 to 230°) during the summer of 1996
at the Willamette River Valley observation station.
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Fig. 3. Graph of Relative Humidity (Z-Axis) 2.3 m AGL and Mean CAB 0.3 m AGL
(Y-Axis). Colored symbols for 2.3 & 6.3 m temperature difference (magenta,
(+AT) or unstable; blue green, (-AT) or stable; white, neutral); ); symbols for
prevailing wind directions ((x) or WNW (230 to 10° with mean 307°); (0) or
ENE (10 to 150° with mean 64°), () 150 to 230°) during the summer of 1996
at the Willamette River Valley observation station.
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Time of day (24 h clock)

Fig. 4. Wind Speed Versus Time of Day During the Summer of 1996 at the Willamette
River Valley Observation Station. Gray is sunlight, black is no sun light and X is
WNW, O is ENE wind direction, and is 150 to 230° wind direction.
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Fig. 5. Graph of Wind Speed Versus CAB Showing Generally Lower CAB
Concentrations in Higher Wind Speeds From WNW and Higher
Concentrations in Lower Wind Speeds From the ENE. See Figure 4 for
symbol definitions.
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plants alter their electrostatic charge (e.g., Leach, 1987)? Or is it some other
mechanism or a combination of mechanisms? The second question is somewhat
related to the first. Is the source of the ambient CAB from local or distant sources?
What is the flux, including resuspension, of bacteria from vegetation and soil?

The study of the atmospheric bacteria dispersal dynamics is needed to
understand the moment-to-moment variations in the natural atmospheric, or in military
terms background, populations of bacteria. These variations may significantly
contribute to false reactions in detection instruments. Understanding what
environmental conditions contribute to the dynamics will allow adjustment in detection
reliability by knowing when detector reactions may or may not be compromised by
ambient background bacterial populations.
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